

Cambridge O Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMBINED SCIENCE

5129/22

Paper 2

October/November 2022

2 hours 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 100.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 The speed of a motorcycle is measured at different checkpoints in a race.

At 22s, the motorcycle passes checkpoint **A** at a speed of 32m/s.

Point **A** in Fig. 1.1 shows the speed of the motorcycle and the time when it passes checkpoint **A**.

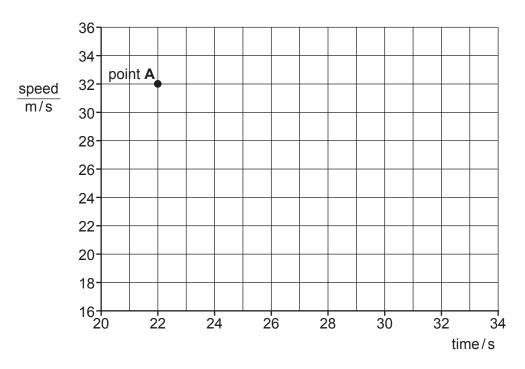


Fig. 1.1

(a) After passing checkpoint **A**, the motorcycle decelerates uniformly.

It passes checkpoint **B** at a speed of 18 m/s, 9 seconds after passing checkpoint **A**.

- (i) On Fig. 1.1, mark and label point **B** to show the speed of the motorcycle and the time when it passes checkpoint **B**. [1]
- (ii) On Fig. 1.1, draw a straight line between point **A** and point **B** to show how the speed of the motorcycle changes between checkpoint **A** and checkpoint **B**. [1]
- (iii) Calculate the deceleration of the motorcycle between checkpoint A and checkpoint B.

Use the equation:

$$deceleration = \frac{change in speed}{time taken}$$

Give your answer to three significant figures.

deceleration = m/s^2 [2]

(b)	A force of 420 N is applied at the brakes to decelerate the motorcycle.
	Using your answer to (a)(iii), calculate the mass of the motorcycle.
	mass = kg [2]

[Total: 6]

2 Fig. 2.1 shows part of a food web in a lake.

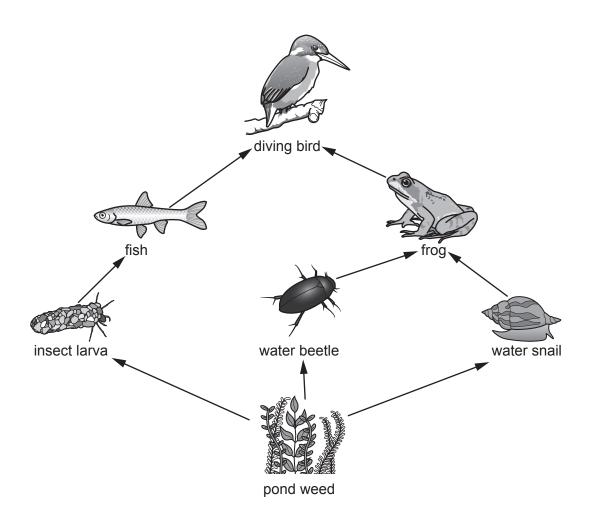


Fig. 2.1

(a) Determine the number of each type of organism in Fig. 2.1.

Write your answers in Table 2.1.

Table 2.1

type of organism	number
producers	
herbivores	
carnivores	
consumers	

[4]

(b) Determine the number of food chains in the food web in Fig. 2.1.

number of food chains =[1]

(c) A snake also lives in the lake.

It eats diving birds and frogs.

Add this information to the food web in Fig. 2.1.

(Do **not** draw a diagram of the snake.) [2]

[Total: 7]

3 Table 3.1 shows some information about the reactions of four different metals $\bf A, \, B, \, C$ and $\bf D.$

The letters ${\bf A},\,{\bf B},\,{\bf C}$ and ${\bf D}$ are **not** the chemical symbols of the elements.

Table 3.1

metal	reacts with dilute hydrochloric acid	reacts with cold water	reacts with steam
Α	yes	no	yes
В	yes	yes	yes
С	no	no	no
D	yes	no	no

(i)	Deduce the ord	der of reactivity of the four metals.	
	most reactive		
	least reactive		[2]
(ii)	Suggest the na	ame of metal C .	
			[1]
Sta			
			[1]
Aluı	minium is above	e zinc in the reactivity series but reacts more slowly with hydrochloric ac	cid.
Ехр	lain the appare	nt unreactivity of aluminium.	
			[1]
Sta			[.]
			[1]
_			her
			[1]
		[Total	: 7]
	(ii) State Alui Exp State Sug	least reactive (ii) Suggest the national State the name of the state apparent of the state one general process of the state o	least reactive

4 A block of weight 9.0 N is placed at one end of a beam resting on a pivot as shown in Fig. 4.1.

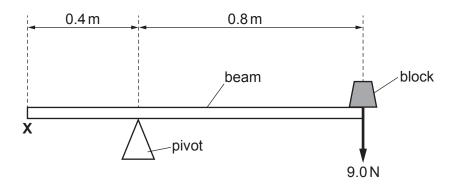


Fig. 4.1

(a) Calculate the moment of the block about the pivot.

		moment =	Nm [2]
(b)	The volume of the block is $0.00018\mathrm{m}^3$.		
	Calculate the density of the block. Give v	our answer in kg/m ³	

Gravitational field strength = 10 N/kg

	density of the block = kg/m³ [3]
(c)	A weight of 18.0 N placed at point X in Fig. 4.1 will not balance the beam.
	Explain why.

[Total: 6]

5 Fig. 5.1 shows a section through a human heart.

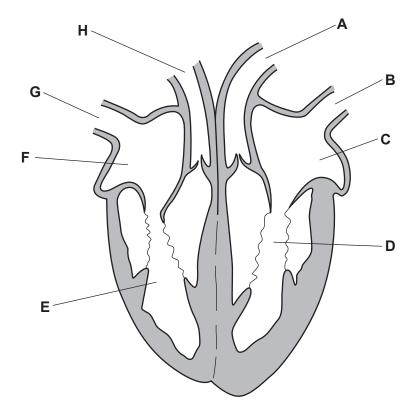


Fig. 5.1

(a) Complete Table 5.1 by inserting the letters from Fig. 5.1 that match each of the descriptions.

Table 5.1

description	letters
two structures that contain oxygenated blood	and
the blood vessel carrying blood to the lungs	
the right ventricle	
an artery	

[4]

(b)	The	e neart pumps blood round the body.	
	Blo	od consists of plasma and blood cells.	
	(i)	State three substances present in plasma.	
		1	
		2	
		3	
			[3
	(ii)	State the names of two types of cell found in blood.	
		1	
		2	
			[2

[Total: 9]

6 Fig. 6.1 shows some reactions involving ammonia.

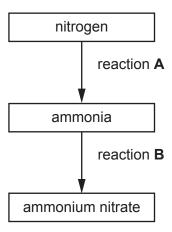


Fig. 6.1

(a) Reaction A takes place in the Haber process.

	(i)	Name the gas that reacts with nitrogen in the Haber process.	
			[1]
	(ii)	Describe two conditions needed for the Haber process.	
		1	
		2	
			[2]
(b)	Nan	ne the acid that is used in reaction B .	
			[1]
(c)	Stat	te one use of ammonium nitrate.	
			[1]
		[Total	: 5]

7 A student investigates how different loads cause the length of a spring to increase.

The results of the investigation are shown in Fig. 7.1.

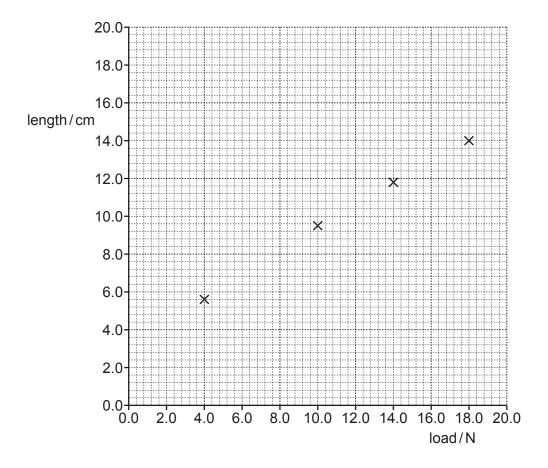


Fig. 7.1

(a)	Describe how the student obtains these results.
	[2]
(b)	Use the results shown in Fig. 7.1 to determine the initial length of the spring (when it is not carrying any load).
	Show any working on the graph.
	initial length =cm [2]
(c)	Determine the extension of the spring at 16.0 N.
	extension =

[Total: 5]

- 8 Methane, CH_4 , and ethane, C_2H_6 , are both members of the same homologous series.
 - (a) (i) Complete Fig. 8.1 to show the outer electrons in a molecule of methane.

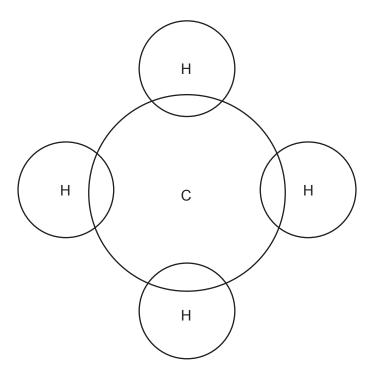


Fig. 8.1

[1]

State the name of the homologous series that contains methane and ethane.
[1]
State two reasons why methane and ethane are members of the same homologous series.
1

(b) State the colour of the mixture obtained when ethane is bubbled through aqueous bromine.

.....[1]

[Total: 5]

[2]

cuticle

glucose

chemical

9 A list of words and phrases about photosynthesis is shown.

amino acids

	nitrogen oxygen phloem root hair	
	stomata thermal xylem	
Con	mplete the sentences using words or phrases from the list.	
Eac	ch word or phrase may be used once, more than once, or not at all.	
(a)	The process of photosynthesis combines carbon dioxide and water to	
	produce and	[2]
(b)	Carbon dioxide enters the leaves of green plants by diffusing in through	
	the	[1]
(c)	Water is absorbed from the soil by the cells	
	and then travels to the leaves in the tissue.	[2]
(d)	The function of the chlorophyll is to convert light energy into	
	energy.	[1]
		[Total: 6]

10 A night vision camera is used to detect animals at night or when there is no natural light. Infrared radiation emitted by the warm animal is detected by the camera. This causes a charge to move in a circuit, which results in a visible image on a display screen. Identify the energy in the animal which is transferred, during respiration, to thermal energy. Tick (✓) one box. chemical elastic electrical kinetic light [1] (ii) State how energy is transferred from the battery in the night vision camera to the screen.[1] (iii) Identify the main way that energy is transferred from the display screen. Tick (✓) one box. chemical electrical kinetic

[1]

© UCLES 2022 5129/22/O/N/22

light

thermal

(b)	The	e camera contains a battery with a potential difference of 3.8 V.
	In n	ormal use, the battery produces $2.7 \times 10^{-3} \text{W}$ of electrical power.
	(i)	Calculate the current in the circuit.
		current in circuit = A [2]
	(ii)	Show that approximately 2.6 C of charge is transferred in the circuit in one hour.
		[3]
		[Total: 8]

11 Two groups of students, group **X** and group **Z**, measure their heart rates during different activities.

The results are averaged and plotted on a graph.

Fig. 11.1 shows the results for each group after averaging.

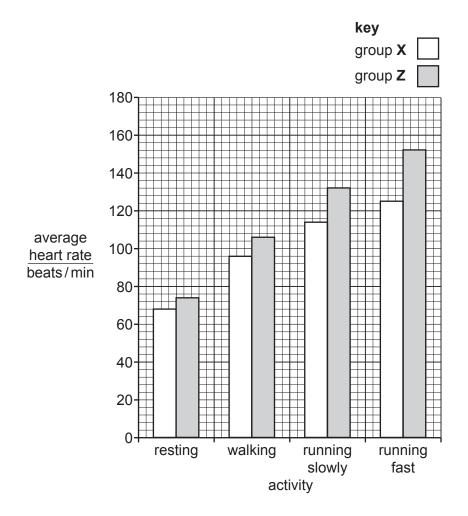


Fig. 11.1

(1)	State the activity which produces an average heart rate in group X or 114 beats/min.	
		[1]
(ii)	State the average heart rate for group Z when the activity is 'running fast'.	
	beats/min	[1]
(iii)	Using the data shown in Fig. 11.1, determine one conclusion that can be made comparing the heart rate of different activities.	by
		[4]

(b)	(i)	Energy for these activities is supplied by respiration.	
		Complete the word equation for aerobic respiration.	
		······································	[2]
	(ii)	State one difference between aerobic and anaerobic respiration.	
			. [1]
		[Tot	al: 6]

12 An iron nail reacts with a mixture of water and air.

The mass of the nail is measured every 100 days.

The results are shown in Table 12.1.

Table 12.1

day	mass of nail /g
0	9.55
100	9.62
200	9.68
300	9.71

(a)	(i)	Name the piece of apparatus used to measure the mass of the nail.
		[1
	(ii)	Calculate the increase in the mass of the nail over 300 days.
		r.
		g [1
	(iii)	Name the type of reaction that iron undergoes when it reacts with water and air.
		[1
(b)	Stat and	e two methods that could be used to prevent the iron nail from reacting with the wate air.
	1	
	2	[2
		الماسان

[Total: 5]

13 A light-weight metal sphere is at rest on a smooth surface.

The sphere has positive and negative charges.

Fig. 13.1 shows the distribution of charges on the sphere when it is neutral.

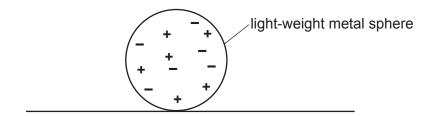


Fig. 13.1

a)	Explain why the sphere is neutral.	
		[1
h۱	A positively charged chicat is placed poor to the ephere as shown in Fig. 12.2	

(b) A positively charged object is placed near to the sphere as shown in Fig. 13.2.

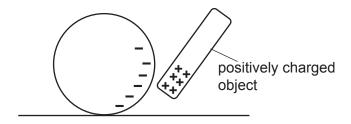


Fig. 13.2

(i)	Explain wh Fig. 13.2.	y the	negative	charges	on	the	sphere	are	now	distributed	as	shown	in
													[2]
(ii)	Suggest wh	nat nov	w happens	s to the sp	oher	e.							
													[1]
												[Total:	4]

A volume of following me	of aqueous sodium hydroxide is neutralised with dilute hydrochloric acid using the ethod:
Step 1 25	.0 cm ³ of aqueous sodium hydroxide is added to a conical flask.
Step 2 Dil	lute hydrochloric acid is titrated into the conical flask until the solution is neutral.
A solution of	f sodium chloride is produced.
	iggest a suitable piece of apparatus to measure the volume of aqueous sodium droxide.
	[1]
(ii) De	escribe the change to the pH value of the mixture in the conical flask.
	[1]
(iii) Sta	ate the colour of universal indicator paper in a neutral solution.
	[1]
(b) State th	ne ionic equation for a neutralisation reaction.
	[1]
(c) Describ	be how sodium chloride solid is obtained from the neutralised solution.
	[1]
	[Total: 5]

15 The boxes on the left in Fig. 15.1 contain names of animal and plant structures.

The boxes on the right in Fig. 15.1 contain names of different functions.

Draw one straight line from each structure to its function.

structure	function
alveolus	urea formation
anther	pollen production
liver	oxygen absorption
testes	sperm production
pancreas	transport
vascular bundle	amylase formation

Fig. 15.1

[5]

16	Dur	ing radioactive decay, changes in the nucleus of an atom cause emissions of radiation.
	(a)	Alpha-particles are one type of emission.
		Suggest one feature of alpha-particles that explains why they are the most ionising type of radiation.
		feature
		explanation
		[2]
	(b)	State one other type of radioactive emission.
		[1]
	(c)	Explain why some types of emission lead to the formation of new elements.
		[1]
	(d)	Explain why waste radioactive materials are encased in concrete and stored deep underground for many years.
		[1]
		[Total: 5]

17 (a) The following is a list of words used when describing reactions.

			acidic	amphoteric	basi	C				
		hydro	gen hy	droxide	ionic	metallic				
	Use	the words in the	list to comple	ete the followir	g sentence	S.				
	Eac	h word may be u	sed once, mo	ore than once,	or not at all.					
	(i)	Non-metallic ele	ments form .		bo	onds with metallic elements	s. [1]			
	(ii)	(ii) Non-metallic elements react with oxygen to form oxides.								
	(iii)	An alkali forms		ion	s in aqueou	s solution.	[1]			
	(iv)		oxido	es react with a	cids and ba	ses.	[1]			
(b)	Stat	e an atmospheri	c pollutant tha	at is responsibl	e for acid ra	ain.				
							[1]			
(c)	Ехр	lain why farmers	add calcium	carbonate to s	oil.					
							[1]			
						[To	otal: 6]			

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	=	2	¥	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	Ϋ́	krypton 84	54	Xe	xenon 131	98	R	radon -			
					6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Ι	iodine 127	85	Αţ	astatine -			
	5				8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъ	polonium -	116		livemorium -
	>				7	z	nitrogen 14	15	ட	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>i</u>	bismuth 209			
	2				9	ပ	carbon 12	14	SS	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pp	lead 207	114	Fl	flerovium
	=				2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	g	cadmium 112	80	Hg	mercury 201	112	C	copernicium
											29	Cn	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium
Group											28	Ë	nickel 59	46	Pd	palladium 106	78	£	platinum 195	110	Ds	damstadtium -
Gro											27	ဝိ	cobalt 59	45	뫈	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
		-	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	H	hassium
											25	Mn	manganese 55	43	<u>၁</u>	technetium -	75	Re	rhenium 186	107	Bh	bohrium
						pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Та	tantalum 181	105	Op	dubnium —
						atc	rek				22	j	titanium 48	40	Zr	zirconium 91	72	茔	hafnium 178	104	꿆	rutherfordium -
											21	Sc	scandium 45	36	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	26	Ba	barium 137	88	Ra	radium -
	_				က	=	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	22	S	caesium 133	87	ъ.	francium -

71	Ľ	lutetium	175	103	۲	lawrencium	I
70	Υp	ytterbium	173	102	8 N	nobelium	ı
69	Tm	thulium	169	101	Md	mendelevium	I
89	Щ	erbium	167	100	Fm	fermium	ı
29	웃	holmium	165	66	Es	einsteinium	_
99	Ò	dysprosium	163	86	ర్	californium	1
65	Tp	terbium	159	26	ă	berkelium	_
64	В	gadolinium	157	96	Cm	curium	_
63	En	europium	152	92	Am	americium	_
62	Sm	samarium	150	94	Pu	plutonium	_
61	Pm	promethium	-	93	Ν d	neptunium	-
09	PZ	neodymium		92	\supset	uranium	238
59	፵	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium		06	T	thorium	232
57	Га	lanthanum	139	89	Ac	actinium	_

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).